
LINEAR MODEL SELECTION AND REGULARIZATION

Esam Mahdi

Data Analytics (ECMP 5005)
School of Mathematics and Statistics

Master of Engineering - Engineering Practice
Carleton University

November 10, 2023

ESAM MAHDI LINEAR MODEL SELECTION AND REGULARIZATION NOVEMBER 10, 2023 1 / 46



LEARNING OBJECTIVES

By the end of this chapter, you should be able to do the following:

1 Select the best subset predictors in linear regression models.

2 Perform stepwise regression and best model selection.

3 Differentiate between the forward and backward stepwise techniques.

4 Use regularization technique: Ridge, lasso, and elastic-net regression to shrink regression
coefficients and pick the most relevant features.

5 Use principle component analysis (PCA) to reduce the dimensionality of data.

6 Perform principle component regression (PCR).

7 Use R with some real-life applications.
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FEATURE SELECTION

Recall the linear regression model is given by

Y = β0 + β1X1 + · · · + βpXp + ε, where ε iid
∼

N (0, σ2)

When there are too many predictor variables then we have two problems:

1 The prediction variance can increase a lot.

2 There might be a significant collinearity among some features (predictors) makes it hard to
interpret the regression coefficients.

Select a subset of only relevant features will helps us to reduce the prediction variance and get
better interpret and predictions.

THREE METHODS FOR FEATURE SELECTION

Subset selection: Fit a regression model by least squares on a reduced subset of the p
predictors that you believe to be related to the response variable.

Shrinkage (Regularization): Fit a model involving all p predictors, but some parameter
estimates are shrunken towards zero by applying some penalty or constraint.

Dimension reduction: Compute M < p different linear combinations, or projections, of the
variables and use these M projections to fit a least squares model.
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Best Subset and Stepwise Model Selection
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BEST SUBSET

Consider the p independent variables x1, x2, · · · , xp and a response y. The best subset
selection method in a regression model :

1 Start with the null model, which contains no predictors. This model has the intercept
coefficient only. It simply predicts the sample mean of the response variable. Denote
this model by M0

2 For k = 1, 2, · · · , p:

1 Fit all
(

p

k

)
= p!

k!(p − k)! models that contain exactly k predictors.

2 Pick the best among these
(

p
k

)
models, and call it Mk. Here best is defined as having the

smallest RSS, or equivalently largest adjusted R2.

3 Select a single best model from among M0, · · · , Mk using cross-validated
prediction error, Cp, AIC, AICc, BIC, or adjusted R2.

Note that this method is a computational expensive as you need to fit a large number of
models,

∑p
k=0

(p
k

)
. For example, if p = 10, then you need to fit 1024 different models.
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BEST SUBSET SELECTION IN R
Consider the Hitters data set in the ISLR2 library. In this example, we use the regsubsets()
function, which is a part of the package leaps to perform a best subset selection of relevant
predictors that can be used to predict a baseball player’s Salary. The best model is quantified
using RSS.

The syntax of the regsubsets() function is the same as for lm().

The summary() command outputs the best set of variables for each model size.

The summary() returns R2, RSS, adjusted R2, Cp, and BIC (that we will explain later!).

By default, regsubsets() only reports results up to the best 8 variable model.

The nvmax() option can be used in order to return as many variables as are desired.
The asterisk in the summary output indicates that a given variable is included in the
corresponding model.

Plotting R2, RSS, adjusted R2, Cp, and BIC for all of the models at once will help us decide
which model to select.

The R code is given in the next slide, where we select the six-variable model with the lowest BIC:

Ŝalary = 91.51 - 1.87 AtBat + 7.60 Hits + 3.70 Walks + 0.64 CRBI -122.95 DivisionW + 0.26 PutOuts
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BEST SUBSET SELECTION IN R
library(ISLR2); library (leaps)
head(Hitters)
anyNA(Hitters) #check if the data has any missing observations
# Count the number of missing values in Salary variable (59 "NA" observation)
sum(is.na(Hitters$Salary))
Hitters <- na.omit(Hitters) #remove the missing data
# Use nvmax() = 19 to return 19 models (default nvmax() = 8)
regfit.full <- regsubsets(Salary ~., data = Hitters, nvmax = 19)
reg.summary <- summary(regfit.full)
reg.summary
reg.summary$adjr2 # return adjusted R-squared for all models
which.max(reg.summary$adjr2) #identify which model has largest adj-R2
which.min(reg.summary$bic) #identify which model provides smallest BIC
# Plot R2, RSS, adjusted R2, Cp, and BIC for all of the models at once
par(mfrow = c(2, 2))
plot(regfit.full, scale = "r2")
plot(regfit.full, scale = "adjr2")
plot(regfit.full, scale = "Cp")
plot(regfit.full, scale = "bic")
# See the coefficient estimates associated with model 6
coef(regfit.full, 6)
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BEST SUBSET AND STEPWISE MODEL SELECTION

STEPWISE REGRESSION

Stepwise Regression is the step-by-step iterative construction of a regression model that
involves the selection of independent variables to be used in a final model. It involves
adding or removing potential explanatory variables in succession and testing for statistical
significance after each iteration (see https://www.investopedia.com).

Three main approaches for stepwise regression:

1 Forward selection.

2 Backward elimination.

3 Bidirectional stepwise: A combination of forward and backward stepwise selection,
testing at each step for independent variables to be included or excluded.
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FORWARD STEPWISE SELECTION

Consider the p independent variables x1, x2, · · · , xp and a response y. The forward stepwise selection is a
step-by-step iterative method for adding variables in a regression model:

1 Starts with no predictor variables in the model (null model)

y = β0 + ε, thus ŷ = β̂0,

where β̂0 = ȳ is the estimated point of β0 in this case.

2 Add the most significant independent variable to this model (say x3).
This can be achieved by implementing any of the following criteria:

Calculate the p-value for testing the hypotheses H0 : βj = 0 against HA : βj ̸= 0, for
j = 1, 2, · · · , p and select the smallest p-value.
It provides the highest increase in adjusted coefficient of determination R2

adj .
It provides the highest drop in predicted residual error sum of squares (PRESS) statistic
compared to other predictors under consideration.

Now the new regression model after adding x3 is

ŷ = β̂0 + β̂3x3 (x3 is added to the null model)

3 Repeat step 2 for the remaining variables until the pre-specified stopping rule (will be explain later) is
reached or until all the independent variables are included in the model.
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BACKWARD STEPWISE ELIMINATION

Consider the p independent variables x1, x2, · · · , xp and a dependent y. The backward stepwise elimination is
a step-by-step iterative method for deleting variables from the model:

1 Starts with all predictor variables in the model (full model)

y = β0 + β1x1 + · · · + βpxp + ε, thus ŷ = β̂0 + β̂1x1 + · · · + β̂pxp,

where β̂0, β̂1, · · · , β̂p are the least squares (or MLE) estimates of β0, β1, · · · , βp.

2 Delete the least significant independent variable to this model (say x3).
This can be achieved by implementing any of the following criteria:

Calculate the p-value for testing the hypotheses H0 : βj = 0 against HA : βj ̸= 0, for
j = 1, 2, · · · , p and select the highest p-value (to be deleted).
It provides the lowest drop in adjusted coefficient of determination R2

adj .
It provides the lowest increase in predicted residual error sum of squares (PRESS)
statistic compared to other predictors under consideration.

Now the new regression model after deleting x3 is

ŷ = β̂0 + β̂1x1 + β̂2x2 + β̂4x4 + · · · + β̂pxp (x3 is removed from the model)

3 Repeat step 2 for the remaining variables until the pre-specified stopping rule (explained in the next
slides) is reached or until no variable is left in the model.
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CHOOSE A PRE-SPECIFIED STOPPING RULE

The final fitted regression model is the model that satisfies:

All included independent variables are significant (at pre-specified α level, say 5%)
when we are testing the hypotheses H0 : βj = 0 versus HA : βj ̸= 0.

This model has the lowest Information Criterion (IC) (see next slide).

Thus, in stepwise regression, we stop adding/removing variables to our final model if
adding/removing will:

Provide p-values that are larger than α, which leads to not reject H0;

increase the values of IC;

the adjusted coefficient of determination, R2
adj , value starts to decrease or not change.
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THE INFORMATION CRITERION (IC)

The Information Criterion (IC) is a measure of goodness of fit that can help us to select the
best parsimonious fitted model (i.e., the model with the least number of significant
predictors).
Th popular IC are:

Mallow’s Cp.

Akaike’s Information Criterion (AIC).

Corrected AIC (AICc).

Bayesian Information Criterion (BIC).

The smaller the value of IC the preferred the model.
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MALLOW’S Cp

Cp = 1
n

(RSS + 2kσ̂2),

where

k = p + 1 is the number of model parameters (β0, β1, · · · , βp).

RSS is the residual sum of squares.

σ̂2 = MSE = RSS/(n − p − 1) is the estimate of Var(ε).

AKAIKE’S INFORMATION CRITERION (AIC)

AIC = 2k − 2 log L̂

where k denotes the number of parameters and L̂ is the maximized value of the log
likelihood function for the estimated model.

Note: In the case of the linear model with Gaussian errors, maximum likelihood and least
squares are the same thing, and Cp and AIC are equivalent.
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CORRECTED AIC (AICC)
A bias corrected version of AIC for use when the sample size is small, or when the number of
parameters estimated is a moderate to large fraction of the sample size is the Corrected AIC (AICc)
which is defined by

AICc = AIC + 2k2 + 2k

n − k − 1
where n denotes the sample size and k denotes the number of parameters.

BAYESIAN INFORMATION CRITERION (BIC)

BIC = k log n − 2 log L̂ = 1
n

(RSS + kσ̂2 log n)

Note:

For model selections, there is no clear choice between AIC, Cp, and BIC.

In general, BIC places more penalty on models with many variables. Thus, it yields to select
smaller models than AIC and Cp.

BIC is asymptotically consistent as a selection criterion. Thus, several statistician prefer to
use BIC and not AIC or Cp.
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ADVANTAGES OF FORWARD AND BACKWARD STEPWISE METHODS

Forward stepwise selection is recommended to be used when the number of
predictors under consideration is, p, very large compared with the sample size n.

Backward stepwise elimination is recommended to be used when we suspect of
multicollinearity, but can not be used when p ≥ n.

Note: Always use the backward stepwise approach, unless the number of variables is more
than the sample size, where the forward stepwise is better in this case.
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LIMITATIONS OF STEPWISE REGRESSION

The main issues with stepwise selection are:

It does not consider all possible combination of potential predictors.

The output of the regression coefficients, confidence intervals, p-values, and R2, etc.
might be biased.

It produces an unstable selection of variables, especially when we have a small
sample size compared to the number of variables we want to study.

It does not consider the causal relationship between variables.

There are many suggestions to deal with the limitations of stepwise approach:

Split the data into training and testing sets (say K-Fold CV). Use the training data to
fit the model and use the testing data to validate this model.

Use bootstrap method to check the stability of the selection.

Consider the shrinkage methods such as LASSO regression.
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FORWARD AND BACKWARD STEPWISE SELECTION IN R
Consider again the Hitters data set that we studied before. We can also use the
regsubsets() function to perform forward stepwise or backward stepwise selection,
using the argument method = "forward" or method = "backward".

regfit.fwd <- regsubsets(Salary ~., data = Hitters,
nvmax = 19, method = "forward")

summary(regfit.fwd)
regfit.bwd <- regsubsets(Salary ~., data = Hitters,

nvmax = 19, method = "backward")
summary(regfit.bwd)

For instance, we see that using forward stepwise selection, the best one variable model
contains only CRBI, and the best two-variable model additionally includes Hits. For this
data, the best one-variable through six-variable models are each identical for best subset
and forward selection. However, the best seven-variable models identified by forward
stepwise selection, backward stepwise selection, and best subset selection are different.
See next slide!
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BEST SEVEN-VARIABLE MODELS IDENTIFIED BY FORWARD STEPWISE
SELECTION, BACKWARD STEPWISE SELECTION, AND BEST SUBSET SELECTION

round(coef(regfit.full, 7), 3)
round(coef(regfit.fwd , 7), 3)
round(coef(regfit.bwd , 7), 3)

Coefficient Best subset selection Forward stepwise selection Backward stepwise selection
Intercept 79.451 109.787 105.649
AtBat − −1.959 −1.976
Hits 1.283 7.450 6.757
Walks 3.227 4.913 6.056
CRBI − 0.854 −
CAtBat −0.375 − −
CHits 1.496 − −
CHmRun 1.442 − −
CRuns − − 1.129
CWalks − −0.305 −0.716
DivisionW −129.987 −127.122 −116.169
PutOuts 0.237 0.253 0.303
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Shrinkage Methods
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BIAS-VARIANCE TRADEOFF

FIGURE: Over-fitting model and prediction accuracy (Bias-variance tradeoff).

Right: The model is overfit the training data. This model has poor performance with low
bias (which is good) but high variance (which is bad) on the test data. Left: The model has
a better performance on the test data. It decreases the variance on the cost of increasing the
bias (Bias-variance tradeoff).
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METHOD OF LEAST SQUARES FOR MULTIPLE REGRESSION

Recall that the multiple linear regression model can be written in the matrix notation
y = Xβ + ε and the estimated model is

ŷ = Xβ̂ols,

where
β̂ols = (X ′X)−1X ′y.

The coefficients β̂ols are obtained by minimizing the loss function

n∑
i=1

(yi − β0 −
k∑

j=1
xijβj)2 = (y − Xβ)′(y − Xβ) (1)
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RIDGE, LASSO, AND ELASTIC-NET REGRESSION

Ridge, lasso, and elastic-net are used to shrink the least important regression coefficients
(predictors) by imposing a penalty on their size.

Thus, regression coefficients will be estimated by minimizing the loss function in (1) imposing
some constraint on these coefficients.

Adding this penalty will reduce the variance of parameter estimates, but it comes at the expense of
some additional bias.

Ridge uses L2 regularization technique by adding L2 penalty which is equal to the square of the
magnitude of coefficients.

LASSO uses L1 regularization technique by adding L1 penalty that is equal to the absolute value
of the magnitude of coefficient

Elastic-Net combines the L1 and L2 regularization together.

Ridge, lasso, and elastic-net regression can be applied to generalized linear models (glm)
including logistic regression models.

It is best to apply ridge, lasso, and elastic net regression after standardizing the predictors (scale),
using the formula

x̃ij = xij

1
n

∑n

i=1(xij − x̄j)2 ,

where x̄j = 1/n
∑n

i=1 xij is the mean of the jth predictor Xj , j = 1, 2, · · · , p.
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RIDGE REGRESSION

The estimated coefficients can be obtained by minimizing the Lagrangian form

n∑
i=1

(yi − β0 −
k∑

j=1

xijβj)2

︸ ︷︷ ︸
Loss function

+ λ

k∑
j=1

β2
j︸ ︷︷ ︸

Penalty term

= (y − Xβ)′(y − Xβ)︸ ︷︷ ︸
Loss function

+ λβ′β︸︷︷︸
Penalty

, (2)

where 0 ≤ λ < ∞ is the tuning parameter. We choose a grid of λ values and the value for which the
cross-validation error is smallest.
The ridge regression solution of (2) is

β̂ridge = (X ′X + λI)−1X ′y.

where I is k × k identity matrix.

The penalty term adds little bit of bias to the parameter estimates to reduce the variance of the predicted
values (improve prediction accuracy).

The intercept β0 has been left out of the penalty term, where we estimated it by β̂0 = ȳ.

When λ = 0 (no regularization), we have β̂ridge = β̂ols.

When λ gets large asymptotically to infinity, the β̂ridge shrinks asymptotically to zero (but never be
exactly zero). Thus, ridge regression does not perform variable selection!
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LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR (LASSO)

The estimated coefficients can be obtained by minimizing

n∑
i=1

(yi − β0 −
k∑

j=1

xijβj)2

︸ ︷︷ ︸
Loss function

+ λ

k∑
j=1

|βj |︸ ︷︷ ︸
Penalty term

, (3)

where 0 ≤ λ < ∞ is the tuning parameter that can be chosen by cross-validation methods, same as in ridge
regression. The lasso regression solution of (3) can be obtained using a quadratic programming technique.

The penalty term adds little bit of bias to the parameter estimates to reduce the variance of the predicted
values (improve prediction accuracy).

When λ = 0 (no regularization), we have β̂lasso = β̂ols.

Making λ sufficiently large can cause some of the coefficients (least important predictors) to be exactly
zero. Thus, LASSO is a method for feature selection.

Thus, lasso regression effectively selects the most important predictors for predicting outcome (better
than stepwise regression).
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ELASTIC-NET REGRESSION

The estimated coefficients can be obtained by minimizing

n∑
i=1

(yi − β0 −
k∑

j=1

xijβj)2

︸ ︷︷ ︸
Loss function

+ λ

k∑
j=1

((1 − α)β2
j + α|βj |)︸ ︷︷ ︸

Penalty mixed term

, (4)

where 0 ≤ λ < ∞ is the tuning parameter and 0 ≤ α ≤ 1 is the elastic-net mixing parameter which
determines the mix of the penalties for considering both ridge and lasso.

The penalty term adds little bit of bias to the parameter estimates to reduce the variance of the predicted
values (improve prediction accuracy).

λ and α can be chosen by cross-validation methods.

When α = 0, we have ridge regression, i.e, β̂elastic-net = β̂ridge.

When α = 1, we have lasso regression, i.e, β̂elastic-net = β̂lasso.

When λ = 0 (no regularization), we have β̂elastic-net = β̂ols.

λ is chosen by cross-validation.
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RIDGE VS LASSO REGRESSION

FIGURE: Lasso Regression can shrink parameter values towards 0, but Ridge Regression can not.
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RIDGE, LASSO, AND ELASTIC-NET REGRESSION IN R

THE GLMNET() FUNCTION IN THE PACKAGE glmnet
The glmnet() function in the package glmnet can be used to fit the ridge, lasso, elastic-net models,
and more.

More information about the R package glmnet can be found here.

The syntax of this function is slightly different from other model -fitting functions as we must pass in an
x matrix as well as a y vector, and we do not use the y ∼ x syntax.

The glmnet() function has an alpha argument that determines what type of model is fit. If alpha = 0
then a ridge regression model is fit, and if alpha = 1 then a lasso model is fit.

By default the argument lambda in the glmnet() is used for an automatically selected range of λ
values. However, you can implement the function over a grid of values.

By default, the glmnet() function standardizes the variables so that they are on the same scale, which
is always recommended. To turn off this default setting, use the argument standardize = FALSE.

See Section 6.5 Lab: Linear Models and Regularization Methods from the textbook.

THE TRAIN() FUNCTION IN THE PACKAGE caret
See the R Markdown example file uploaded in the Brightspace of this course.
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Dimension Reduction Methods
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PRINCIPLE COMPONENT ANALYSIS (PCA)

The idea in principal component analysis (PCA) is to combine p predictor variables into a smaller set of
variables (M ≪ p), which are weighted linear combinations of the original set.

The set of M variables (denotes principal components) explains most of the variability of the full set of
variables.

The M principal components (PC) are uncorrelated.
The first PC accounts for as much of the variability in the data as possible.
Each succeeding PC accounts for as much of the remaining variability as possible.

KEY TERMS FOR PRINCIPAL COMPONENTS ANALYSIS
Principal component: A linear combination that transforms a large number of correlated variables into a
smaller number of uncorrelated variables called principal components.

Loadings: The weights (range from −1 and 1) for each original variable that transform the predictors
into the components.

Screeplot: A plot shows the number of principle components on the X−axis against the proportion of
the variance explained by these components on the Y −axis.
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PRINCIPAL COMPONENTS REGRESSION (PCR)
For two predictor variables, X1 and X2, there are two principal components Z1 and Z2 that are defined as a linear
combination of the original predictor variables:

Zi = ϕ1iX1 + ϕ2iX2, i = 1, 2

The coefficients (weights) ϕ1i, ϕ2i are known as the loadings. The PCA algorithm chooses ϕ’s to capture as much variance
of the data as possible. The first principal component, Z1, captures the largest variance of the data. The second principal
component, Z2, captures the remaining variation.

FIGURE: The green solid line indicates the first principal component, and the blue dashed line
indicates the second principal component.

Now, we can fit a simple linear regression model using one PCA:

Y = θ0 + θ1Z1 + ε = β0 + β1X1 + β2X2 + ε,

where β0 = θ0, β1 = θ1ϕ11 and β2 = θ1ϕ21.
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PRINCIPAL COMPONENTS REGRESSION (PCR)

For a data with p predictor variables, X1, X2, · · · , Xp, the M principle components, Z1, Z2, · · · , ZM , where
M ≪ p, are defined as linear combinations of the original p predictors as follows:

Zm = ϕ1mX1 + ϕ2mX2 + · · · + ϕpmXp =
p∑

j=1

ϕjmXj , m = 1, 2, · · · , M.

We can then use the least squares method to fit the multiple linear regression model

yi = θ0 +
M∑

m=1

θmzim + εi, i = 1, · · · , n (5)

Notice that from (5),

M∑
m=1

θmzim =
M∑

m=1

θm

p∑
j=1

ϕjmxij =
p∑

j=1

M∑
m=1

θmϕjmxij

=
p∑

j=1

βjxij , where βj =
M∑

m=1

θmϕjm

Hence, (5) can be seen as a special case of the original linear regression model and dimension reduction serves

to constrain the estimated βj coefficients.
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PRINCIPAL COMPONENTS REGRESSION (PCR) IN R: HITTERS BASEBALL
DATASET

Principal components regression (PCR) can be performed using the pcr() function,
which is part of the pls package.

The syntax for the pcr() function is similar to that for lm() with some additional
parameters.

The default argument center = TRUE is used to perform mean centering and
setting the argument scale = TRUE will standardize predictor variables.

Setting the argument validation = "CV" tells R to calculate 10-fold
cross-validation error for each possible value of the number of principal components
used. Also note that you can specify validation = "LOOCV" instead to perform
leave-one-out cross-validation.

To determine the number of principal components worth keeping, you can examine
the resulting fit using the syntax summary().

We now apply the PCR to the Hitters data, in order to predict the Salary (response
variable). See the R Markdown example file uploaded in the Brightspace of this course!
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CALCULATE THE PCA USING THE VARIANCE−COVARIANCE MATRIX

Let X denotes the data set of n rows and p features: X =


x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

...
...

xn1 xn2 · · · xnp

 .

Calculate the eigenvalue-eigenvector pairs (λ1, ϕ1), (λ2, ϕ2) , . . . , (λp, ϕp) of the variance-covariance matrix Σ
(defined in Theorem 1, later), where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 and ϕi = (ϕ1i, ϕ2i, · · · , ϕpi)′.
The ith principal component is given by

Zi = ϕ′
iX = ϕ1iX1 + ϕ2iX2 + · · · + ϕpiXp, i = 1, 2, . . . , p. (6)

Given a n × p data set and (7), we define the scores of the first principle component (PC) as

zi1 = ϕ1ixi1 + ϕ2ixi2 + · · · + ϕpixip, where ϕ1i, · · · , ϕpi are the loading of the first PC.

We choose ϕ1 (loading/weights vector) so that Var(Z1) =
1
n

∑n

i=1

(∑p

j=1 ϕj1xij

)2
= λ1 is maximized

subject to the constraint that ϕ′
1ϕ1 =

∑p

j=1 ϕ2
j1 = 1.

The second PC corresponds to the choice of ϕ2 so that Var(Z2) =
1
n

∑n

i=1

(∑p

j=1 ϕj2xij

)2
= λ2 is

maximized subject to ϕ′
2ϕ2 =

∑p

j=1 ϕ2
j2 = 1 and Cov (Z2, Z1) = 0.

The ith PC corresponds to the choice of ϕi so that Var(Zi) = λi is maximized subject to ϕ′
iϕi = 1 and

Cov (Zi, Zj) = 0 for j = 1, . . . , i − 1.
One can show that the total variance of the original variables equals to the sum of the eigenvalues (total sum of
variances of principle components). That is

∑p

i=1 Var(Xi) = λ1 + λ2 + · · · + λp =
∑p

i=1 Var(Zi).
The proportion of the total variance explained by the ith PC is λi/

∑p

i=1 λi.
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CALCULATE THE PCA USING THE CORRELATION MATRIX

Usually, we standardized the predictors (column means and variances of X are 0 and 1, respectively):

Mathematically, we use the formula x̃ji =
xji − x̄i√

Sii

, where

Sii =

√√√√ 1
n − 1

n∑
j=1

(xji − x̄i)2, x̄i =
1
n

n∑
j=1

xji, i = 1, · · · , p.

In R, we use the syntax: scale(x, center = TRUE, scale = TRUE).

In this case, we calculate the eigenvalue-eigenvector pairs (λ1, ϕ1), (λ2, ϕ2) , . . . , (λp, ϕp) of the correlation matrix ρ,
where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 and ϕi = (ϕ1i, ϕ2i, · · · , ϕpi)′ denotes the ith principal component loading vector.

The ith principal component is given by

Zi = ϕ′
iX̃ = ϕ1iX̃1 + ϕ2iX̃2 + · · · + ϕpiX̃p, i = 1, 2, . . . , p. (7)

Total sum of variances of principle components. That is
∑p

i=1 Var(X̃i) =
∑p

i=1 Var(Zi) = p.

The proportion of the total variance explained by the ith PC is λi/p.
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THEOREM 1
If Z1 = ϕ′

1X, Z2 = ϕ′
2X, . . . , Zp = ϕ′

pX are the principal components obtained from the covariance matrix

Σ =


σ11 σ12 · · · σ1p

σ21 σ22 · · · σ2p

...
...

...
...

σp1 σp2 · · · σpp

 =


Var(X1) Cov(X1, X2) · · · Cov(X1, Xp)

Cov(X2, X1) Var(X2) · · · Cov(X2, Xp)
...

...
...

...
Cov(Xp, X1) Cov(Xp, X2) · · · Var(Xp)

 ,

then

ρZi,Xk
=

ϕik

√
λi√

σkk
, i, k = 1, 2, . . . , p

are the correlation coefficients between the components Zi and the variables Xk . Here (λ1, ϕ1) , (λ2, ϕ2) , . . . , (λp, ϕp)
are the eigenvalue-eigenvector pairs for Σ, σkk = Var(Xk) and

σik = Cov(Xi, Xk) =
1
n

∑n

j=1(xji − x̄i)(xjk − x̄k).

THEOREM 2
If Z1 = ϕ′

1X̃, Z2 = ϕ′
2X̃, . . . , Zp = ϕ′

pX̃ are the principal components obtained from the correlation matrix ρ then

ρZi,X̃k
= ϕik

√
λi i, k = 1, 2, . . . , p

are the correlation coefficients between the components Zi and the variables X̃k . Here (λ1, ϕ1) , (λ2, ϕ2) , . . . , (λp, ϕp)
are the eigenvalue-eigenvector pairs for ρ.
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PCA OBTAINED FROM VARIANCE-COVARIANCE MATRIX
Suppose the random variables X1, X2 and X3 have the variance-covariance matrix

Σ =

[ Var(X1) Cov(X1, X2) Cov(X1, X3)
Cov(X2, X1) Var(X2) Cov(X2, X3)
Cov(X3, X1) Cov(X3, X2) Var(X3)

]
=

[ 1 −2 0
−2 5 0

0 0 2

]

The eigenvalue-eigenvector pairs can be obtained by solving |Σ − λI| = 0, where I is identity matrix:

λ1 = 5.83, ϕ′
1 = [.383, −.924, 0]

λ2 = 2.00, ϕ′
2 = [0, 0, 1]

λ3 = 0.17, ϕ′
3 = [.924, .383, 0]

Therefore, the principal components become

Z1 = ϕ′
1X = .383X1 − .924X2

Z2 = ϕ′
2X = X3

Z3 = ϕ′
3X = .924X1 + .383X2
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PCA OBTAINED FROM COVARIANCE MATRIX (CONT.)
The variable X3 is one of the principal components, because it is uncorrelated with the other two variables.
One can show that Var(Zi) = λi for i = 1, 2, 3 and Cov(Zi, Zk) = 0 for i ̸= k. For example,

Var (Z1) = Var (.383X1 − .924X2)
=(.383)2 Var (X1) + (−.924)2 Var (X2)

+ 2(.383)(−.924) Cov (X1, X2)
=.147(1) + .854(5) − .708(−2)
=5.83 = λ1

Cov (Z1, Z2) = Cov (.383X1 − .924X2, X3)
=.383 Cov (X1, X3) − .924 Cov (X2, X3)
=.383(0) − .924(0) = 0

It is also readily apparent that

3∑
i=1

Var(Xi) = 1 + 5 + 2 = λ1 + λ2 + λ3 = 5.83 + 2.00 + .17 =
3∑

i=1

Var(Zi)

ESAM MAHDI LINEAR MODEL SELECTION AND REGULARIZATION NOVEMBER 10, 2023 37 / 46



PCA OBTAINED FROM COVARIANCE MATRIX (CONT.)
The proportion of total variance accounted for by the first principal component is λ1/ (λ1 + λ2 + λ3) = 5.83/8 = .73.
Further, the first two components account for a proportion (5.83 + 2)/8 = .98 of the population variance. In this case, the
components Z1 and Z2 could replace the original three variables with little loss of information.
Next, using Theorem 1, we obtain

ρZ1,X1 =
ϕ11

√
λ1√

σ11
=

.383
√

5.83
√

1
= .925

ρZ1,X2 =
ϕ12

√
λ1√

σ22
=

−.924
√

5.83
√

5
= −.998

Notice here that the variable X2, with coefficient -.924 , receives the greatest weight (load) in the component Z1. It also has
the largest correlation (in absolute value) with Z1. The correlation of X1, with Z1, .925, is almost as large as that for X2,
indicating that the variables are about equally important to the first principal component. The relative sizes of the
coefficients of X1 and X2 suggest, however, that X2 contributes more to the determination of Z1 than does X1. Since, in
this case, both coefficients are reasonably large and they have opposite signs, we would argue that both variables aid in the
interpretation of Z1.
Finally,

ρZ2,X1 = ρZ2,X2 = 0 and ρZ2,X3 =
√

λ2√
σ33

=
√

2
√

2
= 1 (as it should)

The remaining correlations can be neglected, since the third component is unimportant.
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PRINCIPAL COMPONENTS IN R: HITTERS BASEBALL DATASET
Consider the Hitters baseball dataset from the ISLR2 package, which contains various information about 263
professional players on 20 variables. In this example, we perform a PCA on the two predictors Hits (number of hits in
1986) and Runs (number of runs in 1986).
df <- ISLR2::Hitters[,c("Hits","Runs")]
## PCA using princomp() function
pca <- princomp(df, score =F)
pca$loadings

##
## Loadings:
## Comp.1 Comp.2
## Hits 0.881 0.473
## Runs 0.473 -0.881
##
## Comp.1 Comp.2
## SS loadings 1.0 1.0
## Proportion Var 0.5 0.5
## Cumulative Var 0.5 1.0

summary(pca)

## Importance of components:
## Comp.1 Comp.2
## Standard deviation 52.4158146 8.89233667
## Proportion of Variance 0.9720241 0.02797591
## Cumulative Proportion 0.9720241 1.00000000

## PCA using prcomp() function
pca <- prcomp(df, scale = FALSE)
pca

## Standard deviations (1, .., p=2):
## [1] 52.497396 8.906177
##
## Rotation (n x k) = (2 x 2):
## PC1 PC2
## Hits 0.8812558 -0.4726396
## Runs 0.4726396 0.8812558

The weights for Hits and Runs for the first principal compo-
nent are 0.881 and 0.473 and for the second principal component
they are 0.473 and −0.881:
Z1 = 0.881 Hits+0.473 Runs, Z2 = 0.473 Hits−0.881 Runs
The first principal components explain the variability around 97%
and its captures the majority of the variability.
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PRINCIPAL COMPONENTS IN R: HITTERS BASEBALL DATASET

FIGURE: The green solid line indicates the first principal component, and the blue dashed line
indicates the second principal component.
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PCA OBTAINED FROM CORRELATION MATRIX
Consider the covariance matrix

Σ =
[

1 4
4 100

]
and the derived correlation matrix

ρ =

 1
√

1
√

1
4

√
1
√

100
4

√
1
√

100
100

√
100

√
100

 =
[

1 .4
.4 1

]
The eigenvalue-eigenvector pairs from Σ are

λ1 = 100.16, ϕ′
1 = [.040, .999]

λ2 = .84, ϕ′
2 = [.999, −.040]

Similarly, the eigenvalue-eigenvector pairs from ρ are

λ1 = 1 + ρ = 1.4, ϕ′
1 = [.707, .707]

λ2 = 1 − ρ = .6, ϕ′
2 = [.707, −.707]

The respective principal components using Σ are:

Z1 = .040X1 + .999X2

Z2 = .999X1 − .040X2
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PCA OBTAINED FROM CORRELATION MATRIX (CONT.)
The respective principal components using ρ : are:

Z1 = .707X̃1 + .707X̃2 = .707
(

X1 − µ1

1

)
+ .707

(
X2 − µ2

10

)
= .707 (X1 − µ1) + .0707 (X2 − µ2)

Z2 = .707X̃1 − .707X̃2 = .707
(

X1 − µ1

1

)
− .707

(
X2 − µ2

10

)
= .707 (X1 − µ1) − .0707 (X2 − µ2)

Because of its large variance, X2 completely dominates the first principal component determined from Σ. Moreover, this
first principal component explains a proportion

λ1

λ1 + λ2
=

100.16
101

= .992

of the total population variance.
When the variables X1 and X2 are standardized, however, the resulting variables contribute equally to the principal
components determined from ρ. Using Theorem 2, we obtain

ρZ1,X̃1
= ϕ11

√
λ1 = .707

√
1.4 = .837

and
ρZ2,X̃1

= ϕ21
√

λ1 = .707
√

1.4 = .837
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PCA OBTAINED FROM CORRELATION MATRIX (CONT.)
In this case, the first principal component explains a proportion

λ1
p

= 1.4
2 = .7

of the total (standardized) population variance.
Most strikingly, we see that the relative importance of the variables to, for instance, the
first principal component is greatly affected by the standardization.
When the first principal component obtained from ρ is expressed in terms of X1 and X2,
the relative magnitudes of the weights .707 and .0707 are in direct opposition to those of
the weights .040 and .999 attached to these variables in the principal component obtained
from Σ.
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HOW MANY COMPONENTS TO CHOOSE?

In order to reduce the dimension of the data, you must decide how many principal components to select?
Below some methods that you can use:

Method 1 (ad hoc rule): by plotting the screeplot. A scree plot shows how much variation each PC
captures from the data. An ideal curve should be steep, then bends at an "elbow" −− this is the numbers
of components you need to select −− and after that flattens out.

FIGURE: Source: Wikipedia. Just PC 1 − 3 might be enough to describe the data.

Method 2 (ad hoc rule): Select the top components such that the cumulative variance exceeds a given
threshold (say 85%).

Method 3 (formal rule): Use cross-validation methods.
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HITTERS BASEBALL DATASET

df <- as.data.frame(scale(Hitters[,c(1:13,16:18)]))
pca <- princomp(df)
par(mfrow=c(1,2))
screeplot(pca); screeplot(pca, type = "lines")

FIGURE: A screeplot for a PCA of hitters baseball data. Just PC 1 − 6 might be enough to describe
the variability in the data.
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WHAT NEXT?

You need to

Read and understand the examples and code in Section 6.5 Lab: Linear Models and
Regularization Methods from the textbook "An Introduction to Statistical Learning:
With Applications in R"

Solve question 5 in Exercise 6.6.

Solve questions 8 to 11 in Exercise 6.6.
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