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LEARNING OBJECTIVES

By the end of this chapter, you should be able to do the following:

1 Assess the accuracy of the prediction model using cross validation methods.

2 Use bootstrapping methods to estimate of the standard errors, hypothesis testing, and
confidence intervals for parameters.

3 Perform cross-validation and bootstrapping methods using R with some real-life applications.
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RESAMPLING METHODS: CROSS-VALIDATION AND THE BOOTSTRAP

Recall, in regression and other prediction models, we make predictions from the
training data and we need to know how we can test the adequacy of our predictions?

We do this by comparing the predicted values with the true values for the response
variable Y .
In general, there are four methods to use:

Hold out set (test/train) cross validation.
K-fold cross validation.
Leave one out cross validation (LOOCV).
Bootstrap methods. Use one single training sample that we have to estimate parameters,
like standard errors.

Recall: If we sample from the population over and over again, and each time, we
recompute the estimator, then the standard deviation of these estimates is the standard
errors under resampling.
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TRAINING ERROR VERSUS TEST ERROR (BIAS–VARIANCE TRADEOFF)

Training error: Obtained from the same observations that we used in the training set
(the dataset we used to develop the model.)
Test error: We split the data into two disjoint datasets: one is called training data
which we use to train the model and then we apply this model on the holding out set
that has not seen by the model, called test data, to calculate the test error.
Note the training errors are too optimistic errors. The more we fit the data, the less
error we get. On the other hand, the test errors get higher if we overfit well. Thus, the
training errors can underestimate test error.

FIGURE: Source: An Introduction to Statistical Learning with Applications in R (2021).
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HOLD OUT SET

Randomly divide the available set of samples into two parts: a training set and a
validation or hold-out set.
The model is fit on the training set, and this fitted model is used to predict the
responses for the observations in the validation set.
The resulting validation-set error provides an estimate of the test error. This is
typically assessed using mean Squared errors (MSE) in the case of a quantitative
response and misclassification rate in the case of a qualitative (discrete) response.

This method suffers from issues of high variance and it is not recommended to use for
small datasets.
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K-FOLD CROSS-VALIDATION

Divide data randomly into K roughly equal-sized parts. Typically K = 5 or K = 10.
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K-FOLD CROSS VALIDATION DETAILS FOR REGRESSION PROBLEMS

Let the K parts be C1, C2, . . . CK , where Ck denotes the indices of the observations
in part k. There are nk observations in part k : if N is a multiple of K, then
nk = n/K.

Compute

CV(K) =
K∑

k=1

nk

n
MSEk,

where
MSEk =

∑
i∈Ck

(yi − ŷi)2 /nk

and ŷi is the fit for observation i, obtained from the data with part k removed.
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LEAVE-ONE-OUT CROSS-VALIDATION (LOOCV)

Setting K = n yields n-fold or Leave-one-out cross-validation (LOOCV).

1 Here, we use the first observation as a test set and the remaining n − 1 observations to
train the model.

2 The second observation serve as the test and the other remaining n − 1 values as a
train set.

3 This algorithm is repeated until all observations have served as a test.

With regression models, the LOOCV can be obtained by fitting a single model as follows:

CV(K) = 1
n

n∑
i=1

(
yi − ŷi

1 − hi

)2
,

where ŷi is the ith fitted value from the original least squares fit, and hi = [H]ii is the
leverage (diagonal of the "hat" matrix, H = X(XT X)−1XT , where X is the design
matrix.) This is like the ordinary MSE, except the ith residual is divided by 1 − hi.
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K-FOLD CROSS VALIDATION DETAILS FOR CLASSIFICATION PROBLEMS

Divide the data into K roughly equal-sized parts C1, C2, . . . CK , where Ck denotes the
indices of the observations in part k. There are nk observations in part k : if N is a multiple of
K, then nk = n/K.

Compute

CV(K) =
K∑

k=1

nk

n
Errk,

where
Errk =

∑
i∈Ck

I(yi ̸= ŷi)/nk,

where I(.) is the indicator function of two values 1 and 0.

The estimated standard deviation of CV(K) is

ŜE(CV(K)) =

√√√√ 1
K

K∑
k=1

(Errk − Errk)2

K − 1
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BOOTSTRAP

Bootstrapping allows us to learn about a population by looking at a smaller set of the
data.

Bootstrapping is a method of resampling B times (say B = 1000 samples) from a
single observed sample to estimate the statistical properties.

Each of these bootstrap data sets is created by sampling with replacement (repeat is
allowed), and is the same size as the original dataset. As a result some observations
may appear more than once in a given bootstrap data set and some not at all.

It can provide an estimate of the standard errors, hypothesis testing, or confidence
intervals for parameters.

Note, if the data is a time series, then the observations are correlated. Thus, we can’t
generate bootstrap samples by sampling with replacement. We can instead use the
block bootstrap methods.
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A GENERAL PICTURE FOR THE BOOTSTRAP
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CROSS-VALIDATION AND THE BOOTSTRAPPING IN R
Recall that we previously fit the following polynomial regression to the Auto dataset in the ISLR2
package:

mpg = 56.9001 − 0.4662 × horsepower + 0.0012 × horsepower2

FIGURE: Auto data and fitted polynomial regressions

In this example, we need to explore the resampling techniques covered in this chapter.
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LEAVE-ONE-OUT CROSS-VALIDATION (LOOCV): USE THE boot PACKAGE

require("ISLR2") #to get the "Auto" dataset
require("boot") #to perform cv and bootstrapping methods for GLM
fit_1 <- glm(mpg ~ poly(horsepower, 2), data = Auto)
cv.glm(data = Auto, glmfit = fit_1)$delta #default: K=nrow(dataset)

## [1] 19.24821 19.24787

The cv.glm() function produces a list with several components. The two numbers in the delta
vector contain the cross-validation results. The first component of delta is the average
mean-squared error that we obtain from performing a cross validation method. The second
component is the average mean-squared error but with a bias correction. Our cross-validation
estimate for the test error is approximately 19.25.

Note that in R, the lm() function (stands for linear model) is used to fit the traditional
linear regression model, which is a special case of the glm() function (generalized linear
model). If we use the glm() function without specifying the family (i.e., use the default
argument of family = gaussian), then we get the exact result of using the lm()
function (i.e., glm() = lm() in this case). We will discuss the glm() function in more
details when we study the logistic regression and other generalized linear models later!
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LEAVE-ONE-OUT CROSS-VALIDATION (LOOCV): USE THE caret PACKAGE

require(caret)
train(mpg ~ poly(horsepower, 2),

data = Auto,
method = "lm",

trControl = trainControl(method = "LOOCV"))

## Linear Regression
##
## 392 samples
## 1 predictor
##
## No pre-processing
## Resampling: Leave-One-Out Cross-Validation
## Summary of sample sizes: 391, 391, 391, 391, 391, 391, ...
## Resampling results:
##
## RMSE Rsquared MAE
## 4.387279 0.6832308 3.272041
##
## Tuning parameter 'intercept' was held constant at a value of TRUE
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LOOCV OUTPUT RESULTS FROM TRAIN() FUNCTION IN caret PACKAGE

RMSE: root mean squared error. It measures the average difference between the predictions
made by the model and the actual observations. The lower of the RMSE is the more accurate
of the model predictions.

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2.

Rsquared: Coefficient of determination. It measures how much variability in the response
variable that can be explained by the model. The higher the R-squared, the more closely a
model can predict the actual observations.

MAE: mean absolute error. It measures the average absolute difference between the
predictions made by the model and the actual observations. The lower the MAE, the better the
model.

MAE = 1
n

n∑
i=1

|yi − ŷi|.

In practice, we typically fit several different models and compare these metrics (RMSE, R-squared,
and MAE) to decide which model produces the lowest test error rates and is therefore the best
model to use.
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TRAINING/TEST (HOLD OUT) CROSS VALIDATION

set.seed(123) # to replicate the random selections
# select randomly 50% of the Auto dataset
Index <- sample(1:392, 196) #default: sample(replace = FALSE)

# Alternatively, use createDataPartition() function in "caret" package
#Index <- createDataPartition(Auto$mpg, p = 0.5, list = FALSE)

traindata <- Auto[Index,] # training set
testdata <- Auto[-Index,] # test set
fit_2 <- lm(mpg ~ poly(horsepower, 2),

data = traindata)
pred <- predict(fit_2, testdata)

# Calculate the RMSE for the test data
sqrt(mean((testdata$mpg - pred)**2))

## [1] 4.059694
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10-FOLD CROSS VALIDATION

kcv <- trainControl(method = "cv", number = 10)
train(mpg ~ poly(horsepower, 2),

data = Auto,
method = "lm",
trControl = kcv)

## Linear Regression
##
## 392 samples
## 1 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 353, 353, 354, 352, 353, 353, ...
## Resampling results:
##
## RMSE Rsquared MAE
## 4.365403 0.6961696 3.27712
##
## Tuning parameter 'intercept' was held constant at a value of TRUE
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USE CV TO SELECT THE DEGREE OF POLYNOMIAL

set.seed(1)
cv.error.10 = rep(0,10) # to save the results from the loop
for (i in 1:10){

glm.fit = glm(mpg ~ poly(horsepower, i), data = Auto)
cv.error.10[i] = cv.glm(Auto, glm.fit, K=10)$delta[1]

}
cv.error.10

## [1] 24.21538 19.28327 19.12998 19.29201 19.09471 18.87874 18.78127 18.80484
## [9] 18.92676 18.99439

plot(1:10,cv.error.10, type = "o", lwd = 2,
xlab = "Degree of Polynomial", ylab = "Mean Squared Error")

ESAM MAHDI RESAMPLING METHODS SEPTEMBER 18, 2023 18 / 22



BOOTSTRAP (OUTPUT NEXT PAGE)
Here, we use bootstrapping method to estimate the standard errors of the coefficient estimates β̂0, β̂1, and β̂2
using the boot() function in the package boot as follows:

STEP1 Write a function to extract the coefficient estimates β̂0, β̂1, and β̂2 from the fitted regression model. This
function must take at least two arguments. The first argument passed will always be the original data.
The second will be a vector of indices which define the bootstrap sample:

boot_fn <- function (data ,index){
fit <- lm(mpg~horsepower+I(horsepower^2),data=data,subset=index)

return(coef(fit)) }
boot_fn(Auto,1:nrow(Auto))

STEP2 Use the boot() function to calculate the standard errors of B = R = 1, 000 bootstrap estimates for
the regression coefficients:

set.seed(1)
bootstrap <- boot(data = Auto, statistic = boot_fn, R = 1000)

STEP3 You may compare the standard errors you got from Step 2 with those obtained from the following code:

summary(lm(mpg~horsepower+I(horsepower^2),data=Auto))$coef

You may also construct confidence intervals for the coefficients. For example, a 95% confidence interval
for a given coefficient β is given by

[
β̂ ± 2 × SE(β̂)

]
.
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BOOTSTRAP (OUTPUT RESULTS FROM PREVIOUS CODE)
## (Intercept) horsepower I(horsepower^2)
## 56.900099702 -0.466189630 0.001230536

##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = Auto, statistic = boot_fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 56.900099702 3.511640e-02 2.0300222526
## t2* -0.466189630 -7.080834e-04 0.0324241984
## t3* 0.001230536 2.840324e-06 0.0001172164

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 56.900099702 1.8004268063 31.60367 1.740911e-109
## horsepower -0.466189630 0.0311246171 -14.97816 2.289429e-40
## I(horsepower^2) 0.001230536 0.0001220759 10.08009 2.196340e-21

Confidence interval around β0 : [56.9001 ± 2 × 2.03002] ≈ [52.84006, 60.96014]
Confidence interval around β1 : [−0.46619 ± 2 × 0.0324241984] ≈ [−0.53103, −0.40135]
Confidence interval around β2 : [0.001231 ± 2 × 0.000117] ≈ [0.000997, 0.001465]
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PLOT THE BOOTSTRAP SAMPLING AND GET THE CONFIDENCE INTERVALS

Histogram of t
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## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = bootstrap, type = "norm")
##
## Intervals :
## Level Normal
## 95% (52.89, 60.84 )
## Calculations and Intervals on Original Scale

ESAM MAHDI RESAMPLING METHODS SEPTEMBER 18, 2023 21 / 22



WHAT NEXT?

You need to

Read and understand the examples and code in Section 5.3 Lab: Cross-Validation and
the Bootstrap from the textbook "An Introduction to Statistical Learning: With
Applications in R"

Solve question 5 in Exercise 5.4.

Solve question 6 in Exercise 5.4.

Solve question 8 in Exercise 5.4.
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