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LEARNING OBJECTIVES

By the end of this chapter, you should be able to do the following:

1 Use simple and multiple linear regression models to estimate the mean response, make
predictions, and interpret the results.

2 Perform analysis of variance and statistically evaluate the utility of the estimated linear model.

3 Test hypotheses and construct confidence intervals on the regression coefficients.

4 Use the appropriate interaction, reduced, and full models.

5 Explore diagnostic methods to check the validity assumptions of linear regression models:

Homogeneity variance (homoscedasticity): the variance of the errors is constant.
Linearity: relationships between predictors and response variables are linear.
Independence: the errors are not correlated.
Normality: the errors are normally distributed.
Model specification: include only significant and relevant variables and exclude
insignificant variables.

6 Use R with some real-life applications.

ESAM MAHDI LINEAR REGRESSION SEPTEMBER 22, 2023 2 / 68



SIMPLE LINEAR REGRESSION

X is the feature, or input, or, independent, or predictor variable - can be quantitative
(numeric) or qualitative (category) variable.

Y is the target, or dependent, or response variable - must be quantitative variable.

Simple linear regression assumes that Y is linearly depends on X so that

Y = f(X) + ε = β0 + β1X + ε, (1)

where β0 and β1 are two unknown constants that represent the intercept and slope, also known
as coefficients or parameters, and ε captures measurement errors and other discrepancies.

It is assumed that εi iid
∼

N (0, σ2) which is also independent from xi for all i.

iid stands for independent and identically distributed and N for normal distribution. Thus, εi

are independent and identically normally distributed with mean zero and variance σ2.

Note that f(x) = E(Y |X = x) means expected value (average) of Y given X = x which is
called the regression function.
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ESTIMATION OF THE PARAMETERS BY LEAST SQUARES

From the sample values (x1, y1), (x2, y2), · · · , (xn, yn) of (X, Y ), we estimate β0 by β̂0 and β1 by β̂1;

The prediction for Y based on the i th value of X is given by

ŷi = E(Y |X = xi) = β̂0 + β̂1xi (2)

Let ei = ε̂i = yi − ŷi denotes the ith residual and define the residual sum of squares (RSS) as

RSS = e2
1 + e2

2 + · · · + e2
n =

n∑
i=1

(yi − β̂0 − β̂1xi)2;

The least squares method chooses β̂0 and β̂1
to minimize the RSS as follows:

β̂1 =
∑n

i=1 (xi − x̄) (yi − ȳ)∑n
i=1 (xi − x̄)2 ,

β̂0 = ȳ − β̂1x̄,

where ȳ ≡ 1
n

∑n
i=1 yi and x̄ ≡ 1

n

∑n
i=1 xi

are the sample means. Note that the
∑n

i=1 ei = 0, so that ē = 0.
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MODEL ASSUMPTIONS

1 Linearity: There exists a linear relationship between the predictor and the response variables.

Note that the linear model is a function that is linear in the parameters βj , so the
polynomial model, for example Y = β0 + β1X + β2X2 + ε is quadratic as a function of
X but linear in the coefficients β0, β1, and β2.

Y = β0X

β1 + X(1 + ε) and Y = β0eβ1Xε are two examples of nonlinear models.

2 Independency:

The error terms are independent of each other.
The error terms are independent from the independent variables.

3 Normality: The error terms are normally distributed with mean equal to zero [i.e., E(ε) = 0] and
common variance equal to σ2 [i.e., Var(ε) = σ2].

4 Homoscedasticity: The variance of error terms σ2 are similar across the values of the independent
variables.

Note that assumptions (2-4) means that εi
iid∼ N (0, σ2), for i = 1, · · · , n.
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ASSESSING THE ACCURACY OF THE COEFFICIENT ESTIMATES

The standard error of an estimator reflects how it varies under repeated sampling. We have

SE(β̂1) =
√

σ2∑n
i=1 (xi − x̄)2 , SE(β̂0) =

√√√√σ2

[
1
n

+ x̄2∑n
i=1 (xi − x̄)2

]
,

where σ2 = Var(ε), which can be estimated by σ̂2 = s2 = RSS/(n − 2).

These standard errors can be used to compute confidence intervals. A 95% confidence interval
is defined as a range of values such that with 95% probability, the range will contain the true
unknown value of the parameter. It has the form

β̂i ± 2 · SE(β̂i), i = 0, 1.

That is, there is approximately a 95% chance that the interval[
β̂i − 2 · SE(β̂i), β̂i + 2 · SE(β̂i)

]
will contain the true value of βi, for i = 0, 1.
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HYPOTHESIS TESTING

Standard errors can also be used to perform hypothesis tests on the coefficients. The most common
hypothesis test involves testing the null hypothesis of
H0 : There is no relationship between X and Y,

versus the alternative hypothesis

HA : There is some relationship between X and Y.

Alternatively, we are testing
H0 : β1 = 0

versus
HA : β1 ̸= 0,

since if β1 = 0 then the model reduces to Y = β0 + ε, and X is not associated with Y .

To test the null hypothesis, we compute a t-statistic, given by

t = β̂1 − 0
SE(β̂1)

∼ tdf=n−2.

Using statistical software, one can reject the null hypothesis, at a 5% level of significance, if the
probability value (p-value) is less than or equal to 0.05.
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MULTIPLE LINEAR REGRESSION MODEL

The multiple linear regression model relating the dependent variable (response) Y to p independent variables
(predictors) x1, x2, · · · , xp is

Y = β0 + β1X1 + β2X2 + · · · + βpXp︸ ︷︷ ︸
µY |X1,X2,··· ,Xp

+ε, (3)

where

The parameters βj , j = 0, 1, · · · , p, are unknown constants, called the regression coefficients (β0
denotes the intercept).

ε is an error term that describes the effects on Y of all factors other than the independent variables
X1, X2, · · · , Xp (all unexplained variations in Y ).

X1, X2, · · · , Xp are independent predictor variables, measured without error, which may represent
higher-order terms for quantitative predictors (e.g., X2 = X2

1 ) or terms for qualitative (categorical)
predictors.

Let xij denote the ith observation of variable Xj , and yi denote the ith observation of variable Y , where
i = 1, · · · , n and j = 1, · · · , p, then the estimation/prediction equation is

E(Y |X1 = x1, · · · , Xp = xp) = ŷi = β̂0 + β̂1xi1 + β̂2xi2 + · · · + β̂pxip (4)
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LEAST SQUARES ESTIMATION IN MATRIX NOTATION

The multiple regression model in (3) can be written in matrix notation as

Y = Xβ + ε, ε ∼ N (0, σ2In×n), (5)

or 
y1
y2
...

yn

 =


1 x11 x12 · · · x1p

1 x21 x22 · · · x2p

...
...

. . .
. . .

...
1 xn1 xn2 · · · xnp

 ×


β0
β1
...

βp

 +


ε1
ε2
...

εn


The estimated values for β will be called β̂ and the best fitted model is

Ŷ = Xβ̂, where X is called design matrix.

Mathematically, the vector β̂ =
[
β̂0, β̂1, · · · , β̂p

]′
is obtained by minimizing the residual sum of squares

RSS =
n∑

i=1

(yi − ŷi)2 =
n∑

i=1

e2
i = e′e = [e1, e2, · · · , en]


e1
e2
...

en

 ,

where e = Y − Ŷ = Y − Xβ̂ are the residuals (estimate the unobserved errors ε = (ε1, · · · , εn)′).
The least squares estimates of β are given by

β̂ = (X′X)−1X′Y
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SOME IMPORTANT QUESTIONS

1 Is at least one of the predictors X1, X2, · · · , Xp useful in predicting the response?

2 Do all the predictors help to explain Y , or is only a subset of the predictors useful?

3 How well does the model fit our data? (Does our data violate the linear regression
assumptions?)

4 Given a set of predictor values, what response value should we predict, and how
accurate is our prediction?
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THE ANALYSIS OF VARIANCE (ANOVA)

To answer these questions, we can use the analysis of variance (ANOVA) based on the following estimators:

Total sum of squares (Total variation) is given by T SS =
∑n

i=1(yi − ȳ)2.

Sum of squares for regression (Explained variation) is given by SSreg =
∑n

i=1(ŷi − ȳ)2.

Sum of squared errors (Unexplained variation) is given by RSS =
∑n

i=1(yi − ŷi)2.

Total variation is the sum of explained and unexplained variation. That is

T SS = SSreg + RSS.

Mean squares errors (MSE) is the point estimate of the variance of the error term σ2:

s2 = MSE = RSS

n − (p + 1) .

Residual standard error (RSM) is the point estimate of the standard deviation of the error term σ:

s = RSM =
√

MSE =
√

RSS

n − p − 1 .
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ASSESSING THE OVERALL ACCURACY OF THE MODEL

For the first question (to test whether the model is adequate for predicting Y ) we use the global F −test based
on the analysis of variance (ANOVA) to test the following hypotheses:

H0 : β1 = β2 = · · · = βp = 0 (Overall model is not useful for predicting Y )
HA : at least one of β1, β2, · · · , βp ̸= 0, (At least one model term is useful for predicting Y )

The test statistic is

F = Explained variation/p

Unexplained variation/(n − p − 1) = (T SS − RSS)/p

RSS/(n − p − 1)

Reject H0 at level of significance α (usually 0.05) in favor of HA if:

F ≥ Fα or p-value ≤ α, where Fα is based on p numerator and n − (p + 1) denominator degrees of
freedom (df).

TABLE: The analysis of variance (ANOVA)

Source SS df MS F Rejection region
Regression SSreg p MSR = SSreg

p MSR
MSE

= SSreg/p

RSS/(n−p−1)Residuals RSS n − p − 1 MSE = RSS
n−p−1

Total T SS n − 1
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COEFFICIENT OF DETERMINATION

DEFINITION

The multiple coefficient of determination, R2, is the ratio of explained variation to total variation. That is,

R2 = SSreg

T SS
= 1 − RSS

T SS
, 0 ≤ R2 ≤ 1.

R2 measures the proportion of the total variation in the response variable that can be explained by using
the independent variables in the model. For example, R2 = 0.6 means that 60% of the variability in Y
can be explained by the regression model.

The higher the proportion of variation that is explained by the model, the better your predictions will be.

R2 = 0 implies a complete lack of fit of the model to the data, and R2 = 1 implies a perfect fit, with the
model passing through every data point.

Adding an independent variable to multiple regression will raise R2 (even if this variable does not relate
to Y ). Thus, in practice always use the adjusted value of R2 that is given by

R2
adj = 1 − RSS/(n − p − 1)

T SS/(n − 1) .

Note that R2
adj ≤ R2 and, for poor-fitting models R2 may be negative.
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INFERENCES ABOUT THE INDIVIDUAL β PARAMETERS

ONE-TAILED TESTS TWO-TAILED TEST
H0 : βi = 0 H0 : βi = 0 H0 : βi = 0
HA : βi < 0 HA : βi > 0 HA : βi ̸= 0

Test statistic: T = β̂i

s(β̂i)
Rejection region: T < −tα T > tα |T | > tα/2

where tα and tα/2 are based on n − (p + 1) degrees of freedom and
n = Number of observations,
p + 1 = Number of β parameters in the model.

Note: Most statistical software programs report two-tailed p-values on their output.
To find the appropriate p-value for a one-tailed test, make the following adjustment to P = two-tailed p-value:

For HA : βi > 0, p-value =
{

P/2 if T > 0
1 − P/2 if T < 0

For HA : βi < 0, p-value =
{

1 − P/2 if T > 0
P/2 if T < 0

A (1 − α)100% confidence interval for a regression coefficient βi, i = 0, 1, · · · , p is given by

β̂i ± tα/2(n − p − 1)SE(β̂i) (6)
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TESTING WHETHER A SPECIFIED SUBSET OF THE PREDICTORS HAVE
REGRESSION COEFFICIENTS EQUAL TO ZERO
Suppose that we are interested in testing

H0 : β1 = β2 = . . . = βk = 0, where k < p

i.e., Y = β0 + βk+1xk+1 + . . . + βpxp + ε (reduced model)
against HA : H0 is not true

i.e., Y = β0 + β1x1 + . . . + βkxk + βk+1xk+1 + . . . + βpxp + ε (full model).

This can be achieved using an F-test. Let RSS(Full) be the residual sum of squares under the full model (i.e.,
the model which includes all the predictors, i.e., HA ) and RSS(Reduced) be the residual sum of squares under
the reduced model (i.e., the model which includes only the predictors thought to be non-zero, i.e., H0 ). Then
the F-statistic is given by

F = ( RSS(reduced ) − RSS( full ))/ (df reduced − df full )
RSS( full )/df full

= (RSS( reduced ) − RSS( full ))/k

RSS( full )/(n − p − 1)

since the reduced model has p + 1 − k predictors and

[n − (p + 1 − k)] − [n − (p + 1)] = k.

This is called a partial F-test.
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MENU PRICING IN A NEW ITALIAN RESTAURANT IN NEW YORK CITY
Consider the dataset that is available in the file nyc.csv which can be found from the website of the book
*"A Modern Approach to Regression with R"* written by Simon Sheather
https://gattonweb.uky.edu/sheather/book/data_sets.php. The data are in the form of
the average of customer views on

Y = Price = the price (in $US) of dinner (including one drink & a tip).

X1 = Food = customer rating of the food (out of 30).

X2 = Décor = customer rating of the decor (out of 30).

X3 = Service = customer rating of the service (out of 30).

D = East = dummy variable = 1 (or 0) if the restaurant is east (or west) of Fifth Avenue.

1 Develop a regression model that directly predicts the price of dinner (in dollars) using a subset or all of
the 4 potential predictor variables listed above.

2 Determine which of the predictor variables Food, Décor and Service has the largest estimated effect on
Price? Is this effect also the most statistically significant?

3 If the aim is to choose the location of the restaurant so that the price achieved for dinner is maximized,
should the new restaurant be on the east or west of Fifth Avenue?

4 Does it seem possible to achieve a price premium for “setting a new standard for high-quality service in
Manhattan” for Italian restaurants?
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R-CODE: MENU PRICING IN A NEW ITALIAN RESTAURANT IN NEW YORK
CITY
We use the built in R function lm() to estimate the linear model Y = β0 + β1X1 + β2X2 + β3X3 + β4D + ε

nyc <- read.csv("https://gattonweb.uky.edu/sheather/book/docs/datasets/nyc.csv", header=TRUE)

attach(nyc)
m1 <- lm(Price ~ Food + Decor + Service + East)

summary(m1)

##

## Call:

## lm(formula = Price ~ Food + Decor + Service + East)

##

## Residuals:

## Min 1Q Median 3Q Max

## -14.0465 -3.8837 0.0373 3.3942 17.7491

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -24.023800 4.708359 -5.102 9.24e-07 ***
## Food 1.538120 0.368951 4.169 4.96e-05 ***
## Decor 1.910087 0.217005 8.802 1.87e-15 ***
## Service -0.002727 0.396232 -0.007 0.9945

## East 2.068050 0.946739 2.184 0.0304 *
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 5.738 on 163 degrees of freedom

## Multiple R-squared: 0.6279,Adjusted R-squared: 0.6187

## F-statistic: 68.76 on 4 and 163 DF, p-value: < 2.2e-16
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MENU PRICING IN A NEW ITALIAN RESTAURANT IN NEW YORK CITY

1 The initial regression model including all predictors is

Price=-24.02+1.54Food+1.91Décor-0.003Service+2.07East

2 Décor has the largest effect on Price since its regression coefficient is largest. Also it is the
most statistically significant since its p-value is the smallest of the three.
Be careful! in general we can’t compare the regression coefficients of the variable,
but in this example we can! Why?

3 In order that the price achieved for dinner is maximized, the new restaurant should be on the
east of Fifth Avenue since the coefficient of the dummy variable is statistically significantly
larger than 0.

4 It does not seem possible to achieve a price premium for "setting a new standard for high
quality service in Manhattan" for Italian restaurants since the regression coefficient of Service
is not statistically significantly greater than zero.
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R-CODE: MENU PRICING AFTER REMOVING THE VARIABLE SERVICE

m2 <- update(m1, ~.-Service)
summary(m2)

Estimate Std. Error t value Pr(>|t|)
Intercept −24.0269 4.6727 −5.14 < 0.0001
Food 1.5363 0.2632 5.84 < 0.0001
Decor 1.9094 0.1900 10.05 < 0.0001
East 2.0670 0.9318 2.22 0.0279

The final regression model is

Price = -24.03 + 1.54 Food + 1.91 Décor + 2.07 East

Comparing the last two sets of output from R, we see that the regression coefficients for the
variables in both models are very similar. This does not always occur.
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A POLYNOMIAL MODEL WITH A QUANTITATIVE PREDICTOR

A response Y is related to a single independent variable X , but not in a linear manner. The polynomial model
of order p is:

Y = β0 + β1X + β2X2 + · · · + βpXp + ε.

Here, we consider the second-order model (p = 2). This model is called the quadratic model which is given by

E(Y |X) = β0 + β1X + β2X2,

where

β0 is the Y -intercept of the curve

β1 is a shift parameter

β2 is the rate of curvature
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AUTO DATA IN ISLR2 PACKAGE: POLYNOMIAL REGRESSION

FIGURE: polynomial regression on Auto data

The figure suggests that

mpg = β0 + β1 × horsepower + β2 × horsepower2 + ε

might be suitable model to predict the miles per gallon based on a quadratic form of the engine
horsepower.
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AUTO DATA: POLYNOMIAL REGRESSION

require("ISLR2")
poly_fit <- lm(mpg ~ horsepower + I(horsepower^2),data = Auto)
summary(poly_fit)

Results:

Estimate Std. Error t value Pr(>|t|)
Intercept 56.9001 1.8004 31.60 < 0.0001
horsepower −0.4662 0.0311 −14.98 < 0.0001
horsepower2 0.0012 0.0001 10.08 < 0.0001
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INTERACTIONS MODELS

The first-order model (in polynomial model) includes only terms for quantitative variables that are not
functions of other independent variables (no interaction).

The Interaction model is considered when the effect of an independent variable on a dependent variable
changes, depending on the value(s) of one or more other independent variables. The interaction effect is
represented as a cross-product terms = ×.
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x2 = 0
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x2 = 2

FIGURE: Non interaction model graph of
E(Y ) = 1 + 2X1 + X2, for X2 = 0, 1, 2
where X1 is independent from X2.
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FIGURE: Interaction model graph of
E(Y ) = 1 + 2X1 − X2 + X1 × X2, for
X2 = 0, 1, 2 where X1 and X2 are
interacted.
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AN INTERACTION MODEL WITH QUANTITATIVE PREDICTORS

AN INTERACTION MODEL RELATING E(Y ) TO AT LEAST ONE QUANTITATIVE
INDEPENDENT VARIABLE

The mean value E(Y |X1, X2) of a response Y is related to two quantitative independent variables X1 and X2
by the interaction model

E(Y ) = β0 + β1X1 + β2X2 + β3X1X2.

where

(β1 + β3X2) represents the change in E(Y ) for every 1-unit increase in X1, holding X2 fixed,

(β2 + β3X1) represents the change in E(Y ) for every 1-unit increase in X2, holding X1 fixed

Note:

The interaction between X1 and X2 is called a two-way interaction, because it is the interaction between
two independent variables.

Higher-order interactions are possible (e.g., three-way interaction). For example, consider the three
quantitative independent variables X1, X2, and X3, then E(Y ) is related to X1, X2, and X3 by the
interaction model

E(Y |X1, X2, X3) = β0 + β1X1 + β2X2 + β3X3 + β4X1X2 + β5X1X3 + β6X2X3 + β7X1X2X3.
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REGRESSION WITH DUMMY VARIABLES: ANALYSIS OF COVARIANCE

The linear models is commonly referred as Analysis of Covariance when we model a response variable, Y
based on quantitative and qualitative variables dummy predictor variables. There are 4 cases:

CASE 1: COINCIDENT REGRESSION LINES:
The simplest model in which the dummy variable has no effect on Y , that is,

Y = β0 + β1X + 0D + ε (equivalently Y = β0 + β1X + ε)

and the regression line is exactly the same for both values of the dummy variable (D).

CASE 2: PARALLEL REGRESSION LINES:
When dummy variable produces an additive change in Y , that is,

Y = β0 + β1X + β2D + ε =
{

β0 + β1X + ε when D = 0
β0 + β1X + β2 + ε when D = 1

In this case, the regression coefficient β2 measures the additive change in Y due to the dummy variable.
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REGRESSION WITH DUMMY VARIABLES: ANALYSIS OF COVARIANCE

CASE 3: EQUAL INTERCEPTS BUT DIFFERENT SLOPES:
A third model to consider for this situation is one in which the dummy variable only changes the size of the
effect of X on Y , that is,

Y = β0 + β1X + β2X × D + ε =
{

β0 + β1X + ε when D = 0
β0 + (β1 + β2)X + ε when D = 1

CASE 4: UNRELATED REGRESSION LINES (INTERACTION MODEL):
When quantitative and dummy variables are interacted, that is,

Y = β0 + β1X + β2D + β3X × D + ε =
{

β0 + β1X + ε when D = 0
β0 + β2 + (β1 + β3)X + ε when D = 1

In this case, the regression coefficient β2 measures the additive change in Y due to the dummy variable, while
the regression coefficient β3 measures the change in the size of the effect of X on Y due to the dummy
variable.
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ADVERTISING DATA: INTERACTIONS MODEL

Consider the advertising data in the package ISLR2 that has the following variables:

TV: Advertising budgets on TV.

radio: Advertising budgets on radio.

newspaper: Advertising budgets on newspaper.

sales: Response variable.

Suppose we need to build a linear regression to predict the sales based on the advertising on TV and
radio. Suppose also that spending money on radio advertising actually increases the effectiveness of
TV advertising, so that the slope term for TV should increase as radio increases. In this case, we
need to add an interaction term to our model by multiplying the effects of both TV and radio.

sales = β0 + β1 × TV + β2 × radio + β3 × ( radio × TV) + ε

= β0 + (β1 + β3 × radio) × TV + β2 radio + ε
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ADVERTISING DATA: MODELLING INTERACTIONS

Advertising <- read.csv("C:/1/Advertising.csv")
attach(Advertising)
interact_fit1 <- lm(sales ~ TV + radio + TV:radio)
# Alternatively, use "*" instead of ":" as follows
# interact_fit1 <- lm(sales~TV*radio) #no need to include "TV+radio"

summary(interact_fit1)

Results:

Estimate Std. Error t value Pr(>|t|)
Intercept 6.7502 0.2479 27.23 < 0.0001
TV 0.0191 0.0015 12.70 < 0.0001
radio 0.0289 0.0089 3.24 0.0014
TV × radio 0.0011 0.0001 20.73 < 0.0001

ESAM MAHDI LINEAR REGRESSION SEPTEMBER 22, 2023 28 / 68



ADVERTISING DATA: INTERPRETATION

The results in the previous table suggests that interactions are important.

The p-value for the interaction term TV × radio is extremely low, indicating that there is
strong evidence for HA : β3 ̸= 0.

The R2 for the interaction model is 96.8%, compared to only 89.7% for the model that
predicts sales using TV and radio without an interaction term (check this as an exercise!).

This means that (96.8 − 89.7)/(100 − 89.7) = 69% of the variability in sales that remains
after fitting the additive model has been explained by the interaction term.

The coefficient estimates in the table suggest that an increase in TV advertising of $1, 000 is
associated with increased sales of

(β̂1 + β̂3 × radio) × 1000 = 19.1 + 1.1 × radio units.

An increase in radio advertising of $1, 000 will be associated with an increase in sales of

(β̂2 + β̂3 × TV) × 1000 = 28.9 + 1.1 × TV units.
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STYLIZED EXAMPLE: AMOUNT SPENT ON TRAVEL
A small travel agency has retained your services to help them better understand two important customer
segments. The first segment, which we will denote by A, consists of those customers who have purchased an
adventure tour in the last twelve months. The second segment, which we will denote by C, consists of those
customers who have purchased a cultural tour in the last twelve months. Data are available on 925 customers
(i.e., on 466 customers from segment A and 459 customers from segment C). Note that the two segments are
completely separate in the sense that there are no customers who are in both segments. Interest centres on
identifying any differences between the two segments in terms of the amount of money spent in the last twelve
months . In addition, data are also available on the age of each customer, since age is thought to have an effect
on the amount spent. The data are given on the web site
https://gattonweb.uky.edu/sheather/book/docs/datasets/travel.txt in the file
travel.txt.
Clearly from Figure 31 (see next slide) that the dummy variable for segment changes the size of the effect of
Age, X on Amount Spent, Y . We shall also allow for the dummy variable for Segment to produce an additive
change in Y . In this case the appropriate model is what we referred to above as Unrelated regression lines

Y = β0 + β1X + β2C + β3X × C + ε =
{

β0 + β1X + ε when C = 0
β0 + β2 + (β1 + β3)X + ε when C = 1

where Y = amount spent; X = Age; and C is a dummy variable which is 1 when the customer is from
Segment C and 0 otherwise (i.e., if the customer is in Segment A).
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travel <- read.table("https://gattonweb.uky.edu/sheather/book/docs/datasets/travel.txt",header=TRUE)
# install.packages("tidyverse")
library("ggplot2")
p1 <- ggplot(travel)
p1 + geom_point(aes(x = Age, y = Amount, color = Segment, group = C)) +

theme_bw() + labs(y = "Amount Spent", x = "Age")
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FIGURE: A scatter plot of Amount Spent versus Age for segments A and C.
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R-CODE FOR AMOUNT SPENT VERSUS AGE FOR SEGMENTS EXAMPLE

attach(travel)
mfull <- lm(Amount ~ Age + C + C:Age) # or use "*" to include the interaction term
summary(mfull)

##
## Call:
## lm(formula = Amount ~ Age + C + C:Age)
##
## Residuals:
## Min 1Q Median 3Q Max
## -143.298 -30.541 -0.034 31.108 130.743
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1814.5445 8.6011 211.0 <2e-16 ***
## Age -20.3175 0.1878 -108.2 <2e-16 ***
## C -1821.2337 12.5736 -144.8 <2e-16 ***
## Age:C 40.4461 0.2724 148.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 47.63 on 921 degrees of freedom
## Multiple R-squared: 0.9601,Adjusted R-squared: 0.9599
## F-statistic: 7379 on 3 and 921 DF, p-value: < 2.2e-16
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R-OUTPUT
Notice that all the regression coefficients are highly statistically significant. Thus, we shall use as a final model
(full model) The fitted model is

Amount Spent = $1814.54 - $20.32 x Age -1821.2337 x C + 40.4461 Age x C

For customers in segment A (i.e., C = 0) the model predicts

Amount Spent = $1814.54 - $20.32 x Age

while for customers in segment C (i.e., C = 1) it predicts

Amount Spent = $1814.54 - $20.32 x Age -1821.2337 x 1 + 40.4461 Age x 1
= - $6.69 + $20.13 × Age

Thus, in segment A (i.e., those customers who have purchased an adventure tour) the amount spent decreases
with Age while in Segment C (i.e., those customers who have purchased a cultural tour) the amount spent
increases with Age.
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R-CODE - AMOUNT SPENT VERSUS AGE FOR SEGMENTS EXAMPLE (CONT.)
Imagine that we are interested in an overall test of

H0 : β2 = β3 = 0

i.e., Y = β0 + β1x + ε (reduced model: coincident regression lines:) against

HA : H0 is not true

i.e., Y = β0 + β1x + β2C + β3C × x + ε (full model: unrelated lines).
The fit under the reduced model is

mreduced <- lm(Amount ~ Age)
summary(mreduced)

Estimate Std. Error t value Pr(>|t|)
Intercept 957.9103 31.3056 30.60 < 0.0001
Age −1.1140 0.6784 −1.64 0.1009
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R-CODE - AMOUNT SPENT VERSUS AGE FOR SEGMENTS EXAMPLE (CONT.)
Then the F-statistic is given by

F = (RSS(reduced) − RSS(full))/(df(reduced) − df(full))
RSS(full)/dffull

= (52158945 − 2089377)/(923 − 921)
2089377/921 = 1103

and the output from R associated with this F-statistic is

anova(mreduced,mfull)

## Analysis of Variance Table
##
## Model 1: Amount ~ Age
## Model 2: Amount ~ Age + C + C:Age
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 923 52158945
## 2 921 2089377 2 50069568 11035 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

There is very strong evidence against the reduced model in favour of the full model. Thus, we prefer the
unrelated regression lines model to the coincident lines model.
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MENU PRICING IN A NEW ITALIAN RESTAURANT IN MANHATTAN (CONT.)
Earlier we obtained the final regression model (reduced model) for predicting the menu pricing in a new Italian restaurant in
New York City as

Price = -24.03 + 1.54 Food + 1.91 Décor + 2.07 East

We wonder whether the restaurants on the east side of Fifth Avenue are very different from those on the west side with
service and Décor thought to be more important on the east of Fifth Avenue. Thus, to investigate whether the effect of the
predictors depends on the dummy variable East, we consider the extended model (full model):

Y = β0 + β1X1 + β2X2 + β3X3 + β4D + β5 × X1 × D + β6 × X2 × D + β7 × X3 × D + ε,

where Y = Price, X1 = Food, X2 = Décor, X3 = Service, and D = East = dummy variable.
We test the hypothesis

H0 : β3 = β5 = β6 = β7 = 0

i.e., Y = β0 + β1x1 + β2x2 + β4 × D + ε (reduced model) against

HA : H0 is not true

i.e., Y = β0 + β1X1 + β2X2 + β3X3 + β4D + β5 × X1 × D + β6 × X2 × D + β7 × X3 × D + ε (full model).
Regression output from R showing the test procedures appears is given in the next slide.
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R-CODE FOR ANOVA TEST - ITALIAN RESTAURANTS IN MANHATTAN

# We will run the code and interpret the results in lecture class
nyc<-read.csv("https://gattonweb.uky.edu/sheather/book/docs/datasets/nyc.csv",header=T)
attach(nyc)
mfull <- lm(Price~Food+Decor+Service+East+Food:East+Decor:East+Service:East)
summary(mfull)
mreduced <- lm(Price~Food+Decor+East)
summary(mreduced)
anova(mreduced,mfull)
detach(nyc)

The F-statistic for comparing the reduced and full models based on ANOVA is given by

F =
(RSS(reduced) − RSS(full))/(df(reduced) − df(full))

RSS(full)/dffull
≈ 1.11

The p−value of ANOVA test equals 0.36. Thus, we can’t adopt the full model and we conclude that the reduced final model

Price = -24.03 + 1.54 Food + 1.91 Décor + 2.07 East

is a good to be adopted.
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REGRESSION DIAGNOSTICS FOR MULTIPLE REGRESSION

After fitting a multiple regression model, we check the validity of the model assumptions by:

1 Examining the plots of the standardized residuals and/or fitted values.

2 Determining which (if any) of the observation points are unusual and influential, that are substantially
different from all other observations:

which (if any) of the response variable Y values are unusual (outliers).
which (if any) of the predictor values that have an influential large effect (leverage
points) on the estimated regression model.

3 Checking whether the errors have constant variance; i.e., homogeneous (homoscedasticity) or not; i.e.,
heterogeneous (heteroskedasticity).

4 Checking the extent of collinearity among the predictor variables using variance inflation factors (VIF).

5 For time series data, check for autocorrelation over time.
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USING RESIDUALS FOR MODEL CHECKING

The model is valid model if the conditional mean Y given X = {X1, X2, · · · , Xp} is a linear
function of X and the conditional variance of Y given X is constant vector. In other words,

E(Y | X = x) = β0 + β1x1 + · · · + βpxp and Var(Y | X = x) = σ2.

When a valid model has been fit, a plot of standardized residuals against any predictor or any linear
combination of the predictors will have the following features:

A random scatter of points around the horizontal axis, since the mean function of the error
term is zero when a correct model has been fit

Constant variability as we look along the horizontal axis.

Thus, any pattern in a plot of standardized residuals is indicative that an invalid model has been fit
to the data.

Furthermore, when the model is valid, then the plot of Y against Ŷ should produce points
scattered around a straight line.
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PLOTS OF RESIDUALS

FIGURE: Residuals plotted against linear-model fitted values that reflect (a) model adequacy, (b)
quadratic and not linear relationship, and (c) nonconstant variance.
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MENU PRICING IN A NEW ITALIAN RESTAURANT IN NEW YORK CITY

library("tidyverse")
library("gridExtra") #Arrange multiple grobs
library("GGally") #Same as "pairs" function of base R
nyc=read.csv("https://gattonweb.uky.edu/sheather/book/docs/datasets/nyc.csv",header=T)
attach(nyc)
ggpairs(nyc,columns = 4:6)

The plot from this code is shown in the next slide. We will see that the model is misspecified as the predictors
seem to be related linearly at least approximately.

The model is misspecified when the following two conditions hold:

E(Y | X = x) = g(β0 + β1x1 + · · · + βpxp)

and
E(Xi | Xj) ≈ α0 + α1Xj

where g is not the identity function (i.e., g(x) = x).
Note that the model is valid when g(x) = x is the identity function. In this case, the plot of Y against Ŷ
produces points scattered closely around a straight line.
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SCATTER PLOT MATRIX OF THE CONTINUOUS PREDICTOR VARIABLES
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FIGURE: Scatter plot matrix of the three numerical predictor variables.
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PLOTS OF STANDARDIZED RESIDUALS AGAINST EACH PREDICTOR VARIABLE
(CHECKING FOR LINEARITY)
To check linearity residuals, we plot the standardized residuals against each predictor. If any of
these plots show systematic shapes, then the linear model is not appropriate.

m1 <- lm(Price ~ Food + Decor + Service + East)
res.std1 <- rstandard(m1)
nyc <- nyc %>% mutate(res.std = res.std1)
p1 <- ggplot(nyc) + geom_point(aes(Food,res.std)) + theme_bw() +
ylab("Standardized Residuals")
p2 <- ggplot(nyc) + geom_point(aes(Decor,res.std)) + theme_bw()+
ylab("Standardized Residuals")
p3 <- ggplot(nyc) + geom_point(aes(Service,res.std))+theme_bw()+
ylab("Standardized Residuals")
p4 <- ggplot(nyc) + geom_point(aes(East,res.std)) + theme_bw() +
ylab("Standardized Residuals")
layout <- rbind(c(1,2),c(3,4))
grid.arrange(grobs=list(p1,p2,p3,p4),ncol=2,layout_matrix=layout)

The plots from this code are shown in the next slide.
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PLOTS OF STANDARDIZED RESIDUALS AGAINST EACH PREDICTOR VARIABLE
(CHECKING FOR INDEPENDENCY BETWEEN RESIDUALS AND PREDICTORS)
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FIGURE: Scatter plot matrix of the predictor variables and standardized residuals.
ESAM MAHDI LINEAR REGRESSION SEPTEMBER 22, 2023 44 / 68



PLOTS OF FITTED VALUES AGAINST THE MENU PRICING VARIABLE
(CHECKING THAT THE REGRESSION IS A LINEAR MODEL)
ggplot(m1,aes(.fitted,Price))+geom_point()+geom_abline()+xlab("Fitted Values")+theme_bw()
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FIGURE: A plot of Price against fitted values.
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CHECK FOR NONLINEARITY USING PLOT FROM BASE R
We can, also, check whether the linearity is valid or not by examining the first plot obtained from the following
code plot(m1)

plot(m1, which = 1)
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FIGURE: A plot of residuals against fitted values to check for any nonlinearity pattern.
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PLOTS OF STANDARDIZED RESIDUALS AGAINST FITTED VALUES FOR MENU
PRICING DATA (CHECK THE CONSTANT VARIANCE OF ERRORS)
We can check whether the errors (residuals) have constant variance (homoscedasticity) or not (heteroscedastic) by
examining the scatterplot of standardized residuals against fitted values. If the assumption is valid, then there should be no
pattern in the plot.

ggplot(m1, aes(.fitted, .resid)) + geom_point() + geom_hline(yintercept = 0) +
labs(x = "Fitted Values", y = "Residuals") + theme_bw()
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FIGURE: A plot of standardized residuals against fitted values.
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CHECK FOR HETEROSKEDASTICITY USING PLOT FROM BASE R
We can, also, check whether the variance of the errors is constant or not by examining the third plot obtained
from the following code plot(m1)

plot(m1, which = 3)
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FIGURE: A plot of square root of absolute standardized residuals against fitted values to check for
heterogeneous variance of errors.
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FORMAL TEST STATISTIC TO DETECT HETEROSCEDASTICITY

The function ncvTest() from the R package car is the score test that can be used to test
for non- constant error variance. The null hypothesis

H0 : The errors have constant variance

is tested against the alternative hypothesis

HA : The errors have non constant variances

car::ncvTest(m1)

## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 0.8396175, Df = 1, p = 0.35951

The large p-value (p = 0.35951 > α = 0.05) suggests that the variance is constant.
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THE HAT-MATRIX

Recall that the linear regression model in a matrix notation is Y = Xβ + ε, and the fitted values are

Ŷ = Xβ̂, where β̂ = (X′X)−1X′Y ,

Thus, the predicted values of Y can be calculated as follows:

Ŷ = X
(

X′X
)−1

X′Y = HY , where H = X
(

X′X
)−1

X′

The (n × n) idempotent matrix H is commonly called the hat matrix. Let hij denote the (i, j) th element of H , then

ŷi = hiiyi +
∑
j ̸=i

hijyj

where hii denotes the i th diagonal element of H , which measures the extent to which the fitted regression model ŷi is
attracted by the given data point, yi.

Note that the hat matrix is an idempotent because it satisfies HH ′ = H2 = H .
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OUTLIER AND INFLUENTIAL LEVERAGE POINTS

A value whose absence would significantly change the regression equation is termed an
influential observation.

FIGURE: The effect of leverage and outlier points on the fitted model. The estimated fitted line with
and without leverage influential point.
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IDENTIFY THE POTENTIAL INFLUENTIAL LEVERAGE POINTS

HAT-VALUES

A common measure of leverage is the hat-value = hii; as a rule of thumb, hii > 2(p + 1)/n indicate a
high-leverage (influential) data value.
With multiple explanatory variables and values xi for observation i with mean x̄ (as row vectors), let X̃
denote the model matrix using centered variables. Then, the leverage of the ith observation is

hii = 1
n

+ (xi − x̄)(X̃ ′X̃)−1(xi − x̄)′, where 0 < hii < 1

Notice how the leverage increases as the xi gets farther from x̄.

COOK’S DISTANCE
Another metric to measure the leverage points is Cook’s distance, as a rule of thumb, values above
4/(n − p − 1) indicate a high-influential points.
Cook’s distance (Di) of observation i, i = 1, · · · , n is defined as the sum of all the changes in the
regression model when observation i is removed from it.

Di =
∑n

j=1(ŷj − ŷ(−i)j)2

(p + 1)s2 = ê2
i

(p + 1)s2

[
hii

(1 − hii)2

]
= t2

i

p + 1

[
hii

(1 − hii)

]
∼ F (p + 1, n − p − 1)

where ŷ(−i)j is the jth fitted response value obtained when excluding i, ti denotes the studentized residual,
and s2 = MSE.
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COOK’S DISTANCES TO SPOT FOR INFLUENCE POINTS USING base R
plot(m1, which = 4, cook.levels = 1) ## try the code: cooks.distance(m1)
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REGRESSION LEVERAGE PLOTS USING THE PACKAGE car
car::leveragePlots(m1)
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FIGURE: Regression leverage plots for price menu in Italian restaurants data set
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REGRESSION INFLUENTIAL LEVERAGE POINTS USING THE PACKAGE car
car::influencePlot(m1)

## StudRes Hat CookD
## 30 2.9679503 0.01532064 0.026157895
## 56 3.2666518 0.05010858 0.106277650
## 117 0.4493433 0.20746530 0.010622954
## 130 2.9463084 0.07181092 0.128275446
## 168 0.4012884 0.21011533 0.008611493
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FIGURE: Regression influential plots for price menu in Italian restaurants data set
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IDENTIFY THE POTENTIAL OUTLIERS IN THE MENU PRICING DATA

One way to identify the outliers is to check the plot of the fitted values versus residuals resulted
from the lm() function.

plot(m1, which = 1)

Another way is to plot the standardized residual and find out which data point is outside of (−2, 2).
The resulted plots of the code are shown in the next slide

plot(res.std1,ylab="Standardized Residual",ylim=c(-4,4),cex=0.2)
#Add horizontal lines 2 and -2 to identify potential outliers
abline(h =c(-2,0,2), lty = 2,col = 2)
#Find out which data point is outside of 2 standard deviation cut-off
index <- which(res.std1 > 2 | res.std1 < -2)
#Add price value next to points that have extreme value
text(index, res.std1[index], labels=Price[index])
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IDENTIFY THE POTENTIAL OUTLIERS IN THE MENU PRICING DATA
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FIGURE: Potential outliers for menu pricing in a new Italian restaurant at Manhattan.
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USE THE R PACKAGE car TO TEST FOR OUTLIERS
We can use the function outlierTest() build in R package car to test the hypotheses

H0 : Data has no outliers

HA : Data has at least one outlier

car::outlierTest(m1)

## No Studentized residuals with Bonferroni p < 0.05
## Largest |rstudent|:
## rstudent unadjusted p-value Bonferroni p
## 56 3.266652 0.0013284 0.22318

The resulted p-value from the outlierTest() function suggests that we have some outliers in the menu
pricing. We can use the following code to extract which restaurants have the highest extreme prices:

Restaurant[index]

## [1] "Harry Cipriani" "Bravo Gianni" "Il Valletto Due Mila"
## [4] "Nello" "Rughetta" "Rao's"
## [7] "Casa Mia" "Rainbow Grill" "San Domenico"
## [10] "Trattoria Del Sogno"
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CHECK FOR NORMALITY AND DETECT FOR OUTLIERS: QQ PLOT
plot(m1, which = 2) # Try the code car::qqPlot(m1,main="Normal Q-Q")
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MULTICOLLINEARITY AND VARIANCE INFLATION FACTORS

The multicollinearity can leads to a serious problem as the matrix XX ′ might be singular (inverse is not
exist). This singularity might inflate the variance of the regression coefficients.

INFORMAL DIAGNOSTICS FOR EXISTENCE OF COLLINEARITY PROBLEM
Strong correlation between the independent variables.

Adding/removing one predictor implies to large change in the estimated regression coefficients.

The standard errors of the regression coefficients are large.

The estimated regression coefficients does not make sense (wrong sign +/− for what we expect to get).

The overall F -test is highly significant indicating that the overall model is good, but none of the t-tests
on the regression coefficients for the predictor variables is significant.

The value of the coefficient of determination R2 has very small change when an independent variable is
added or removed.

The inverse of the matrix XX ′ might not exist (singular) and its determinate has a value close to zero.

One solution to alleviate the multicollinearity problem is to increase the sample size. Another solution is to
merge some highly dependent variables together. For example, the score of math (X1) and the score of
statistics (X1) might be combined into one variable, say the score of mathematical statistics
(X12 = aX1 + bX2) where a and b are constants.
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VARIANCE INFLATION FACTOR (VIF)

Consider the bivariate regression model

Y = β0 + β1x1 + β2x2 + ε

and let r12 denote the correlation between x1 and x2 and Sxj
denote the standard deviation of xj.

Then it can be shown that

Var
(

β̂j

)
= 1

1 − r2
12

× σ2

(n − 1)S2
xj

j = 1, 2

Notice how the variance of β̂j gets larger as the absolute value of r12 increases. Thus, correlation
amongst the predictors increases the variance of the estimated regression coefficients.

For example, when r2
12 = 0.99 the variance of β̂j is 1

1−r2
12

= 1
1−0.992 = 50.25 times larger than it

would be if r2
12 = 0.

DEFINITION

The term 1
1−r2

12
is called a variance inflation factor (VIF).
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VARIANCE INFLATION FACTOR (VIF)

Recall the general multiple regression model

Y = β0 + β1x1 + β2x2 + . . . + βpxp + ε.

Let R2
j denote the value of R2 obtained from the regression of xj on the other x′ ’s (i.e., the amount

of variability explained by this regression). Then it can be shown that

Var
(

β̂j

)
= 1

1 − R2
j

× σ2

(n − 1)S2
xj

j = 1, . . . , p

DEFINITION

The term 1/
(
1 − R2

j

)
is called the jth variance inflation factor (VIF).

As a rule of thumb

VIF < 5 is an indicative of no multicollinearity.

5 ≤ VIF < 10 is an indicative of minor multicollinearity.

VIF ≥ 10 is an indicative of serious multicollinearity.
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VARIANCE INFLATION FACTOR (VIF) FOR THE MENU PRICING DATA SET

Revisit the example of modeling the menu pricing in a new Italian restaurant in New York
City, where the final model is the reduced model that we obtained by fitting the following
code.

m1 <- lm(Price~Food+Decor+Service+East)

The variance inflation factor (VIF) for this data set are as follows:

library("car")
vif(m1)

## Food Decor Service East
## 2.714261 1.744851 3.558735 1.064985

We noticed that all variance inflation factors less than 5 and so no multicollinearity is
detected.
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USING TRANSFORMATIONS TO OVERCOME NONLINEARITY

There are three situations for transformations

1 Only the response variable needs to be transformed.

2 Only the predictor variables needs to be transformed.

3 Both the response and predictor variables need to be transformed.

There two general methods for transforming

1 Inverse response plots.

2 Box-Cox procedure.

ESAM MAHDI LINEAR REGRESSION SEPTEMBER 22, 2023 64 / 68



TRANSFORMING ONLY THE RESPONSE VARIABLE Y
Suppose that the true regression model between Y and X1, X2, . . . , Xp is given by

Y = g (β0 + β1x1 + · · · + βpxp + ε)

where g is a function that is generally unknown. This model can be turned into a multiple linear
regression model by transforming Y by g−1, the inverse of g, since,

g−1(Y ) = β0 + β1x1 + β2x2 + . . . + βpxp + ε

For example, suppose that

Y = exp (β0 + β1x1 + β2x2 + . . . + βpxp + ε)

then,
g(Y ) = exp(X) and so g−1(Y ) = log(X).

We next look at methods for estimating g−1.
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INVERSE RESPONSE AND BOX-COX TRANSFORMATIONS

INVERSE RESPONSE PLOT

The transformed function g−1 can be estimated from the scatter plot of Y (on the
horizontal axis) and the Ŷ = β̂0 + β̂1x1 + · · · + β̂pxp (on the vertical axis).

BOX-COX TRANSFORMATION

The Box-Cox procedure aims to find a transformation that makes the transformed response
variable close to normally distributed. The simple case for Box-Cox transformation is
given by

gλ(y) =
{

yλ−1
λ λ ̸= 0

log(y) λ = 0

The objective is to use the data to choose a value of the parameter λ that maximizes the
normality of the residuals (gλ(Y ) − Xβ).
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MODELLING DEFECTIVE RATES
This example is taken from Simon Sheather book (See Ch6) which was adapted from Siegel (1997, pp.
509-510). Data can be found on the web site
https://gattonweb.uky.edu/sheather/book/data_sets.php in the file defects.txt.
According to Siegel:
Everybody seems to disagree about just why so many parts have to be fixed or thrown away after they are
produced. Some say that it’s the standard deviation of the temperature of the production process, which needs
to be minimised. Others claim it is clearly the density of the product, and that the problems would disappear if
the density is increased. Then there is Ole, who has been warning everyone forever to take care not to push the
equipment beyond its limits. This problem would be easiest to fix, simply by slowing down the production rate;
however, this would increase some costs. The date has the average number of defects per 1,000 parts produced
(denoted by Defective) along with values of the other variables described above for 30 independent production
runs.
The variables are

Y = Defective.

X1 = Temperature.

X2 = Density.

X3 = Rate.

See the R-markdown Example 2 posted in Brightspace.
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WHAT NEXT?

You need to

Read and understand the examples and code in Section 3.6 Lab: Linear Regression
from the textbook "An Introduction to Statistical Learning: With Applications in R"

Solve question 2 in Exercise 3.7.

Solve question 3 in Exercise 3.7.

Solve question 4 in Exercise 3.7.

Solve question 8 in Exercise 3.7.

Solve question 9 in Exercise 3.7.

Solve questions 13, 14, 15 in Exercise 3.7.
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